タグ:プリズム

今回は
当ブログの定番ネタ?
平行器(光軸検査器)の話の続きです。

続きと言ったって、最後に
平行器の記事を書いたのは
2021年の9月・・・
なんと3年近く前のことでした!

このブログを始めたのが
2021年の2月なので
今年で4年目に突入していますが
平行器作製の記事は
最初の半年に集中していて
それ以降はあまり
触れていなかったのです。

では今まで
何もしてなかったかと言うと・・・
そんなことはありません。
水面下?でちょっとずつ
平行器を進化させていましたよ


前回の記事で
その存在を匂わせたまま
封印されていたコチラの平行器も
公開しますので
FullSizeRender
最後まで読んでいただけると幸いです。


まずは
ねずみの平行器の歴史を簡単に
おさらいしようと思う。

最初に作ったのがコレ
第1世代


第1世代と呼ぶことにする。


特徴としては
ジャンクカメラから取った
ハーフミラーと
ジャンク双眼鏡から取った
プリズムを使い
FullSizeRender

光軸の校正は
3本のイモネジを
プリズムに直接当てて

その締め加減で行う
と言う強引な構造だった。
FullSizeRender
ネジを締めた時の
光軸の動き方が掴みにくく
校正に何時間もかかると言う
厄介な仕様であったが
シンプルな構造のおかげで
一度調整してしまえばほとんど
狂わないと言う良い面もあった。


そんな第1世代に限界を感じて
大幅な改良を加えたのが
この第2世代
第2世代

第1世代の弱点である
校正の難しさを克服して
現在も最も活躍している平行器。

ねずみ独自のシーソー型の
光軸調整機構を組み込んだことで

校正に掛かる時間を大幅に

短縮した仕様となっている。
FullSizeRender
FullSizeRender

現在はこの第二世代をベースに
数々の改良を重ねて最終的に
以下のような仕様となっている。

まず、双眼鏡に当たる面には
植毛紙を貼って反射防止と
双眼鏡の保護を兼ねている。
FullSizeRender


調整ネジには全て真鍮を使い
アルミとの線膨張係数の差を
極力無くすことで

温度差による狂いを減らした
第2世代_ネジ

さらにシーソー構造の回転中心を
とがり先の止めネジから
真鍮の球で受ける構造に変更して
面圧を低減することで
耐久性を向上させている
カップ&ボール


光学系についても
ジャンク双眼鏡のプリズムから
既製品のプリズムに変更して
個体バラツキを減らすなど
プリズム

2.5世代と行っても良いくらいの
改良を加えているのだ。

ちなみにこの仕様は
プロの方にも使って頂いており
ねずみの平行器開発の中で
一つの到達点だと思っている。


ねずみは
この第2世代をベースに
いくつかの派生型を作製し
テストしているので
それらを紹介していこうと思う

まずはこちらの平行器
双眼装置型1

前回の記事で、存在を匂わせたまま
ずっと公開していなかったモノ

双眼装置型2

なんだか扁平な見た目をしてますね、
そして覗き穴が真ん中にある。

内部構造はこんな感じ。
双眼装置型3


シーソー型調整機構を2つ
直列に配置して
手前側をハーフミラー(写真右)
奥側をミラー(写真左)
としている。
双眼装置型4


コイツは
左右の光路長を同じにすると言う
コンセプトで作ったもので
言って見れば双眼装置を
逆から覗いてるのと同じ構造なのだ。

・・・何が良いのかって??


まず通常の平行器は
左右の光路長が大きく異なっている。

眼幅60mmの平行器を
25mm角のパイプで作成したとすると
平行器光路長1

左の光路長が25mmに対して
右は85mmとなる
展開するとこんな感じ。
平行器光路長2

つまり右側は眼幅の分だけ
離れたところから覗いている
状態なので、右側の視界が狭く
像もやや小さく見えるのだ。
平行器視界1
像の大きさが異なると
上下の誤差の判別が難しくなるので
平行器の左右をひっくり返して
同じ見え方になるところを探るなど
精密調整にはコツが必要となる。

実際の見え方がコチラ
平行器視界


それならば
双眼装置の構造を真似て
左右の光路長を同じにしてやれば
左右の像の大きさが同じになり
調整がやりやすくなると考えて
作製したのがこの扁平タイプだ。
平行器光路長3

結果は・・・

視界が極端に狭くて使い辛い。
双眼式視界

ねずみはこの平行器を
40mm幅の角パイプで作ったので
光路長は左右とも
100mmになっており
通常の平行器の右側よりも
長くなってしまった。

展開すると。
平行器光路長4

通常の平行器では
左側の視界が広いので
ズレが大きい双眼鏡でも
左の視界で目標物を
捉えることが出来るのだが
コイツの場合
左右とも視界が激狭のため
それが出来ない。
平行器視界2
さらに
視野が同じ大きさになったことで
左右の区別が付かなくなった・・・
よく考えれば当然ですね。


結局のところ通常の平行器でも
慣れてくれば
精密調整が出来るようになるし

視度望遠鏡等の低倍率の
単眼鏡を組み合わて
さらに像を拡大すれば
FullSizeRender
大きさの違いもほとんど
気にならなくなるので
双眼装置式の平行器は
特に必要性がなくなって
現在はお蔵入りとなっている。


何か良い改善案が見つかれば
復活させるかもしれませんけどね〜。


さて

次にねずみが試した平行器は?!


次回に続く。

mikron8×30 8.5WFの整備をしてから
すっかりNikon好きになってしまった
ねずみが今回紹介するのはこちら。
FullSizeRender
Nikon8×30シリーズの原型となった

Mikron8×30
後期型モデル

中古市場でもほとんど見かけない
レアな双眼鏡である。


以前紹介した
前期型のMikron8×30 8.5°WF↓
FullSizeRender

http://mouse830.livedoor.blog/archives/12692069.html
こちらもレアな双眼鏡。


後期型は形が大きく変わって
胴が短いお馴染みのNikon8×30Aの
スタイルになっているけど
スペックは前期型と同じ。
FullSizeRender
シリアルナンバーから推測するに
後期型って事でいいと思うんだけど
情報が無くて正確な販売時期は
分からなかった。


8×30Aとは見た目そっくりで
NikonとMikronの字体も似てるので
パッと見全く同じに見える。

FullSizeRender
ねずみもこの外観に騙されて
中身も8×30Aと同じだろうと思って
整備を始めたら、開けてビックリ。

8×30Aとはほぼ全ての部品が異なる、
言ってみれば8×30Aのスペシャル仕様
のような双眼鏡だったのだ。


どんな違いがあるのかは
分解しながら説明していこうと思う。

まず大きな違いとして
フォーカスリングのダイヤル部分の
構造が異なっていて
ねずみが入手した個体はこのダイヤルが
空転してピント調整不可な状態だった。
FullSizeRender


このダイヤルはデルトリンテムや
Mikron前期、8×30Aもほぼ同じ構造で

ダイヤルに付いたイモネジを
3方向から
締め込んで固定する構造になっている。
FullSizeRender
イモネジ先端が軸に付いている
円盤の外周に噛み込むので
ダイヤルが空転することも少なく
精密ドライバーがあれば簡単に
調整や増し締めも出来る便利な構造だ。

ところがMikron後期型には
異なる構造が採用されている。

こちらが分解した
mikron後期型のフォーカスリング
FullSizeRender

断面図で比較するとこんな感じ。
左側が一般的な構造で、右がMikron。
FullSizeRender
Mikronには円盤とイモネジが無くて
軸センターのナットを締め込むことで
軸とダイヤルのテーパ面を密着させて
その摩擦力だけで固定している。

このナットが少しでも緩めば摩擦面が
滑ってダイヤルが空転してしまい
しかも、特殊工具がないと
増し締めすら出来ないと言う
不親切な仕様なのだ。

実はZEISSのオーバーコッヘンモデルも
似たような構造になっていて↓
FullSizeRender
Mikron後期型はこれを

真似したものだと思われるが
不具合が起きやすかったのか
コストダウンのためか?
8×30Aではイモネジ式に戻されている。


最初にイマイチなところを
紹介してしまったが他の部分は
どこをとっても8×30Aより
コストのかかったスペシャルな作りに
なっている。

とりわけ際立った違いは
気密、防水性を高めるため各部に
設けられたシール構造だ。

まず鏡体カバーと対物レンズ枠の
合わせ部分にゴムパッキンが
付けられている。

FullSizeRender

そしてその裏側には
シール
面圧を確保するための
バックアップリングが設定されている。
FullSizeRender


さらには鏡体とカバーの合わせ面に
ZEISS JENAによく見られるような
シール剤が塗布されている。
FullSizeRender

極め付けは2重偏心環にまでゴムの
Oリングシールが付けられている
と言う徹底ぶり。
FullSizeRender
これらのシール部材は
後の8×30Aでは全て廃止されている。

この徹底した気密性向上も
ZEISSのオーバーコッヘンモデルを
強く意識したものであると
ねずみは推測している。

オーバーコッヘンは鏡体とカバーの間に
ゴムパッキンが設けられていたり
FullSizeRender

接眼レンズの可動部に
ゴムブーツまで付けられているという

この年代のセンターフォーカスの
ポロ双眼鏡としては過剰なまでの
気密・防水設計が特徴だ。
FullSizeRender

mikron8×30後期型はゴムブーツこそ
付いていないものの
この年代の日本製ポロとしては
最高レベルの気密設計だと思う。

その気密設計が幸いしてか
プリズムには全くカビが無かったのだが
そのかわり結構な曇りが出ていた。
FullSizeRender
カビは無いけど曇りが多い傾向は
オーバーコッヘンモデルも同じで
気密性の高い双眼鏡は
グリスから揮発した油分が内部に
こもってしまって
曇りやすいのではないかと思う。


FullSizeRender
今回もプリズムに傷を付けないよう
細心の注意を払ってクリーニングした。
カビが無かったおかげで新品同様の
透明感に戻った。


ミクロン8×30後期型には
プリズムの固定方法にも特徴がある。

下の写真のようにプリズムの横に
薄い金具がねじ止めされていて
FullSizeRender
FullSizeRender
この金具をプリズム側面に押し当てて
プリズムの位置を固定している。
この構造はとっても便利で
像の倒れを調整した後にこの金具を
プリズムに押し当てて締めてやれば
ズレる心配が無い。

そして、なんとこの構造も
オーバーコッヘンと同じなのだ。
FullSizeRender

オーバーコッヘンが1954年に登場し
Nikon8×30Aの方は1959年。
このMikron後期型は8×30Aの直前に
製造されていたと考えると
ニコンはZEISSオーバーコッヘンを
ベンチマークとしてMikron後期型を
開発したと思われる。
そして、そのコストダウン版が
8×30Aということになりそうだ。


コストダウンされてしまった
8×30Aに対してMikron8×30後期型には
他にも優れた点があるのだけど
中でもねずみが一番気に入ってるのは
各パーツの仕上げがとっても
上質なところ。
FullSizeRender
8×30Aはカバーの縁に角が立っているが
Mikronは角が丸く仕上げられていて
明らかに塗装の艶も良い。
ついでに貼り革のシボも細かくて
上品で手触りが良い。


さらにMikron後期型が凄いのは
8×30Aに対して部品点数が
多いにも関わらず実測17gも軽いのだ。
IMG_8820
おそらく対物レンズ枠等に使われている
金色の部品は軽量なマグネシウム製で
8×30Aではコストダウンでアルミに
置き換えられているのだと思う。

それでもMikron前期型と比べると
18gも重くなってるのだけど
IMG_8823
これはプリズムが大きくなったことが
かなり影響している。

一見、胴が長い前期型の方が
重そうに見えるけど
後期型は胴を短くするために
対物レンズとプリズムの距離を
近づけたせいでプリズムを
大きくしなければならず
逆に重くなってしまったようだ。


Mikron後期型と8×30A
最後の違いは見え味。
光学設計は同じだと思うんだけど
コーティングの違いなのか
見え味の方向性がまるで違う。

8×30Aは暖色系の着色があって
線が太めでコントラスト重視の
華やかコッテリ系。
IMG_8751


Mikronのほうは着色がかなり少なく
コントラスト抑え気味の
あっさりさっぱり系なのだ。
IMG_8745
線は細くてシャープに見えるんだけど
コントラストが低いせいか
遠近感が掴みにくく、平面的に見える。
この辺はオーバーコッヘンを
真似しきれなかったところかな?



・・・そんな感じでNikon8×30兄弟を
4台も集めてしまったねずみ。
FullSizeRender
これでもまだ全種類ではなくて
8×30Aと8×30Eの間には
マイナーチェンジモデルも存在するし
現行機種である8×30EⅡも
ねずみはまだ覗いたことがない。

いつか全種類揃えて
覗き比べしてみたいな〜〜
なんて思ってるけど、、
いったい何台集めれば
気が済むんでしょうね?

自分でもよくわかりません^ ^;

最近、ねずみはコンパクトな双眼鏡に夢中になっている。
いわゆる「オペラグラス」なんだけど、オペラグラスって言うと安っぽく聞こえてしまうのはねずみだけだろうか?

オペラグラスと言えば本来は貴婦人が観劇に使うようなセレブ道具。


しかし
ねずみが子供のころに安っぽい粗悪品オペラグラスが氾濫した時期があった。
パカっと開いたりカクカク折り曲げたりして双眼鏡の形を成すプラスチックのオモチャみたいなやつね。。
無論、視軸調整なんて概念すら無いような代物。
そいつらがオペラグラスと呼ばれていたせいでその呼び方にはどうも抵抗
があって、ねずみはコンパクト双眼鏡と呼んでいる。

今回はねずみのコンパクト双眼鏡コレクションの中でも一番小さい双眼鏡
「テアティス」を紹介しようと思う。

黒のテアティスは
貴婦人が使う本当のオペラグラスとも違って、デルトリンテムのような
無骨な「双眼鏡」の雰囲気がある。
FullSizeRender
このテアティスはマニアの間ではかなり有名で、すでにいろんな先輩方に名機として
ブログ等で紹介されている。

名機と呼ばれるだけあって
その性能は素晴らしい。
FullSizeRender
片手に収まるサイズで携帯性は最高。

倍率は3.5倍と低いけど
最短合焦距離がおよそ40cmと極端に短い。
40cmって言ってもピンと来ないかもしれないけど、自分の手のひらを拡大して見ることが出来るって言ったら分かりやすいかな?

遠くの景色を見てもこのサイズからは想像出来ないほどシャープで明るくて、着色もほとんどない透き通った見え味に心奪われる。

・・・と、それは状態が良ければの話で
例によってねずみが入手した個体は光学系の状態が悪くてぼんやりした画像しか見ることが出来なかった。
FullSizeRender
接眼側からライトを当ててみると曇ったプリズムの真ん中にダハの稜線がうっすら見える程度、。


こうなると当然、プリズムクリーニングして本来のクリアな見え味を取り戻してやりたいところだけど、それには一つ障害がある。
この黒いテアティスはプリズムカバーのネジがグッタペルカで覆われていて外せないのだ。

矢印の部分4箇所にカバーのネジがあるはずなのだが。。
FullSizeRender
グッタペルカは硬くて脆いので一度剥がしたらバラバラになって、ジグソーパズルのようにピースを貼り合わせて再生するしかなくなる。

思い切って全部剥がしてビニックスレザーに置き換えるか、本革でも貼ってみるか。
それともこのまま曇った見え味で我慢するか。


てか、グッタペルカ剥がさないとメンテ出来ないなんて酷い設計だなぁ〜などと思いながら
悩んでいたとき、ねずみはふとあることに気付いた。
ネジの部分のグッタペルカの様子が少し違うのだ。
FullSizeRender
矢印のところが分かりやすいと思う。
ネジの上だけ別のもので埋められているような丸い跡がある。

これでねずみは確信した。

黒いテアティスはグッタペルカを全部剥がさなくても分解出来るようにネジ部分だけ別のモノが詰められている。

やはりツァイスはメンテナンス性も考慮して設計していたのだ。

思い切ってこの部分を

ピンバイスで掘ってみると
FullSizeRender
詰められていた黒い樹脂が取れた。

FullSizeRender
この方法で全てのネジに
アクセスすることが出来た。これで遂にカバーを外すことが出来る!

こちらがカバーを外した状態

中には片側一つづつのプリズムと押さえ金具ががあるだけの超シンプル。
FullSizeRender

ついにプリズムと対面することが出来た。

これがかの有名なシュプレンガー・レーマンプリズム!
FullSizeRender
なんと一つの硝材で上下左右を反転出来るという優れモノ、しかも全て全反射で。

現在主流のシュミット・ペシャンプリズムに比べても高性能だと思うけど、やっぱり光路が一直線じゃないからレイアウトの制約が多くて主流になれなかったのかな〜?

上手く使えればすごく性能の良い双眼鏡が作れると思うんだけどな。


小さいけどダハの稜線はとことんシャープで、光の透過面にはコーティングもされている。
さらにはコバ塗りも丁寧に仕上げられていて、この小さなプリズムにものすごい技術とコストが注ぎ込まれていることが見て取れる。
まさにテアティスの命とも言えるプリズムだ〜!

ところがこのプリズム。性能の裏返しで整備はかなりの高難度、、一つのプリズムにつきダハ面含め5面をクリーニングしなければならない。
しかも鏡体からプリズムを出し入れする時に掴むところが一切無いと言うレイアウト上の制約まである。

反射面をピンセットで掴むわけに行かないので、ねずみは鉛筆のお尻にマスキングテープを輪っかに巻いたものを貼りつけて、それをプリズムのコバに押し付ける形で貼り付けて持ち上げた。

FullSizeRender
この時一番気を使うのは、もちろんダハの稜線。

硬いモノに当てたら一発で欠けてしまうと思われるが、鏡体内部の形状とやたら近い箇所があってプリズムをちゃんとした位置に嵌め込むまではここに干渉する可能性がある。
FullSizeRender
コンパクト化のために隙をギリッギリまで詰めてるのは分かるんだけど、この設計はホントに勘弁して欲しい、、
メンテナンス性いいんだか悪いんだか。
ここに絶対当てないように!って超緊張しながら作業した、、寿命縮んだかも。


なんとかプリズムとレンズをクリーニングしてクリアな視界を取り戻したテアティス。
FullSizeRender
レンズもこれまた極小なので
クリーニングが難しかった、、

こんなに小さいのにちゃんと二重偏心環で視軸調整するようになっているのだが、これもまた難しい。

JIS規格上は倍率が小さいほど基準値が緩いので簡単だと思いがちだけど

0付近を狙った精密調整をやろうと思うと倍率が小さいと平行器を通して見た目標物が小さくなってズレの判別が難しくなるのだ。

・・・なんだか難しいことずくめのテアティスだけど最後にまだ大きな問題が残っている。

カバーのネジを隠していた黒い樹脂部分の再生だ。

元の材質がなんだったのか分からないけど、何かで代用して塞ぐしか無い。

そこで目をつけたのがコレ。
FullSizeRender
ちょっとお高めのモデナと言う樹脂粘土。

こんな使われ方は想定外だと思うけど、伸びが良くて穴埋めには適している。
FullSizeRender
ヘラの先で押してグッタペルカの模様ぽいものを再現。

仕上がりも艶消しでしっかり黒いのでグッタペルカに良く馴染む
完璧とはいかないけどパッと見わからないくらいになった。
FullSizeRender
ねずみ的には大満足な仕上がり。


外観はともかくとして、スッキリ見えるようになったテアティス。

こちらがクリーニング後のテアティスで見た
1m先のデルトリンテム。
FullSizeRender
細部まで観察出来て、これくらいが一番美味しい距離感だな〜と思う。
博物館の展示物とか水槽の魚なんかが
ベストじゃないかな。
(双眼鏡で双眼鏡を見るややこしい絵に
なってしまった)


20mくらい先の木を見てみるとこんな感じ。
FullSizeRender
倍率が低いのでパッと見の迫力には欠けるけど、中心部に目を凝らすと細い線までシャープに見えて来る、そしてとにかくクリアで色が綺麗。


現代ではほとんど絶滅してしまったと思われるプリズム式の本気のコンパクト双眼鏡。
今新品で買えるのはNikonの遊くらいなのかな?

工作技術は格段に進歩してるのに、こんなに細部にこだわった良いモノは2度と作られないだろうと思うとなんだか寂しい。


このテアティスは壊さないように大事に使い倒そうと思う。

いよいよ核心?の
視軸調整について書いてみようと思う。

ねずみは何の知識も無いところから
スタートしたので最初はやり方が
全くわからなかった。
というか素人が手を出しちゃ行けない
領域だと思っていた。
最初の方の記事で書いたけど
平行器を自作したところから
世界が変わって、今ではそれなりに
精度のいい調整が出来るように
なったと思っている
、、まだまだ修行中ですけどね。

視軸調整については、
まとまった文献も見つからないし
ネットで調べても具体的な
調整方法まで説明しているサイトは
皆無と言っていいと思う。
唯一yamacaさんという方のページが
視軸調整の考え方を詳しく
説明されているので
参考にさせていただいた。

今回紹介するノウハウは
そんな断片的な情報のツギハギと、
ねずみの今までの経験から
導き出したものである。
間違いもあるかもしれないので参考に
される方は自己責任でお願いしたい。
そしてもっと正確な情報を
お持ちの方がいれば是非教えてほしい!


最初に
ねずみの理解では双眼鏡において
「光軸」「視軸」
本質的に異なる。
('23.2.19追記: この記事では双眼鏡の光学系全体の光軸のことを視軸と呼んでいます。正確には視軸とは眼球が見ている方向のことですが、それとは異なる意味合いで使っています)


望遠鏡で言う光軸調整
対物レンズと接眼レンズの中心を
一致させることである。

これがズレていると
本来の性能が出ない。
(下図の赤線は光の経路では無く
光学系全体が向いている方向を
擬似的に表しています。)


光軸がズレた状態
望遠鏡1

光軸が合っている状態
望遠鏡2


一方の視軸調整とは望遠鏡を2つ並べて両目で見る装置(つまり双眼鏡)の左右の光軸を平行にすること。
双眼鏡1
理想的には上の絵のように光軸を合わせた望遠鏡を二つ並べて視軸を合わせれば完璧な双眼鏡が出来る。
でもそれは双眼鏡を一から作るときの話で、既存の双眼鏡を調整をする時には視軸と光軸の両方を同時に合わせることは出来ないはず。

双眼鏡の場合

倍率が低いので光軸が多少ズレてても
問題にならないけど
視軸がズレた状態では
使い物にならないので
視軸の方を優先して合わせることになる。

すると多くの場合こうなる。

双眼鏡2
視軸は合っているけど光軸はズレた状態。

平行器での調整は

視軸を平行にすることしか出来ないので
左右の光軸が同じ方向にズレていても
分からない。
平行器一台(一つの眼幅)で
視軸調整された双眼鏡は

ほぼこの状態になっていると思われる。

これだと光軸がズレている以前に

双眼鏡の眼幅を変えた時に
視軸がズレる現象が起きる

自分の眼幅と同じ平行器で

調整されていれば
実用に支障はないけど、、
やっぱり光軸が大きくズレてたら
双眼鏡の真の実力を
引き出せないのでは?

とねずみは考えている。

なので
視軸調整を行う中で光軸もできる限り

良いところに持っていきたい
というのがねずみの考え。

少しヒントがあったけど
その方法はつまり・・・
それを最初に語りだすと
ややこしくなるので
まずは双眼鏡の視軸調整機構について
説明する。


双眼鏡の視軸調整機構には
大きく分けて2種類ある。


1.プリズムを動かすタイプ
2.対物レンズを動かすタイプ

直感的に分かりやすいのは
1のプリズムを動かすタイプ。

プリズムを左右からイモネジで押す構造のもので、
Nikonのミクロンを真似た形の日本製双眼鏡にも多い。
ZEISS以外の古いドイツ製双眼鏡にも
見られる構造だ。

FullSizeRender
矢印の部分がイモネジで
鏡体の外からイモネジを操作する。

FullSizeRender

構造を絵にするとこんな感じ。
イモネジを締め込んだ量がそのままプリズムの移動量になるので直感的にわかりやすくて調整自体はやりやすい。
プリズム1
プリズム2

注意点として、動かしたい方向のネジを先に緩めてから押す側のネジを締めないと、プリズムに過大な圧力がかかってプリズムが割れてしまう。

また視軸を追い込もうとして
何度も調整を繰り返すと
プリズムに傷がついたり
イモネジのスリワリ
(マイナスドライバーをかける部分)
メネジが摩耗してくる。
何かと破損のリスクが多くて気を使うので、ねずみは出来ればこのタイプの調整はやりたくない。


2の対物レンズを動かすタイプは
二重偏心環を使うものがほとんどで

ZEISSのポロはほぼ全てこのタイプ。
戦後の日本製ポロもZEISSを真似てるのでこのタイプが多い。
FullSizeRender
偏心した対物レンズ枠の外側にもう一つ偏心したリングがはまっていて、この2つを回転させることでレンズの位置を動かす構造になっている(写真は分かりやすいように対物レンズ押さえのリングを外したところ)


調整をする時はまず押さえのリングをカニ目レンチで緩める。

FullSizeRender
カニ目が滑ってレンズを傷つけるといけないので、ねずみは丸く切ったゴムシートをレンズの上に乗せて保護している。

この押さえのリングは完全に外してしまうと対物レンズが落っこちるので緩めるだけにしておく。
(一部Nikonなどリングを外さないと
偏心環を回せない機種もある)

外側からイモネジで回転止めしてあるものはこれも緩める。

FullSizeRender
すると対物レンズ枠と外側の偏心環がそれぞれ自由に回転できるようになる。

FullSizeRender
ねずみはいつも爪楊枝を使ってこんな風に回して調整している。


この構造を絵で説明すると
左が外側の偏心環で、右が対物レンズと偏心したレンズ枠が一体になったもの。
この2つの重ね合わせでレンズの位置が決まる

エキセントリック1

内側と外側それぞれのリングの偏心量は等しくなっていて、仮に偏心量を1とすると



この状態はレンズの偏心量が0で
鏡筒の中心と一致している。
エキセントリック2


偏心環の肉厚の側を同じ位相に持ってくるとレンズの偏心量は2となる。


エキセントリック3


90°ずらすとルート2で1.414・・・
エキセントリック4

このように内外の偏心環を回すことでレンズの位置が移動する。
これが基本的な構造。


偏心環の回転に対して移動量が一定じゃないところが直感的に分かりづらいけど、プリズム式のような破損のリスクが少ないので徹底的に視軸を追い込むにはこっちの方がやりやすい

プリズムもしくはレンズが

動かせるという事は分かったけど
これでどう視軸を調整するのか?


それは次の記事で
詳しく説明していくので
乞うご期待。

↑このページのトップヘ